Assignment 12.

This homework is due *Thursday*, November 21.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much. Extra problems is due December 6.

Problems 8 and 9 are optional, meaning that they will only go to the numerator of your grade (not because they are any harder than other problems, but rather because this assignment looks a bit too large). Altogether, you can go as high as 140% on this homework.

(1) (a) (9.3.32i) For a nonempty subset E of a metric space (X, ρ) and a point $x \in X$, define the distance from x to E, dist(x, E) as follows:

$$dist(x, E) = \inf\{\rho(x, y) \mid y \in E\}.$$

Show that the distance function $f:X\to\mathbb{R}$ defined by $f(x)=\mathrm{dist}(x,E),$ for $x\in X,$ is continuous.

- (b) (9.3.32ii) Show that $\{x \in X \mid \operatorname{dist}(x, E) = 0\} = \overline{E}$.
- (c) (9.3.34) Show that a subset E of a metric space X is closed if and only if there is a continuous function $f: X \to \mathbb{R}$ for which $E = f^{-1}(0)$.
- (d) (9.3.33) Show that a subset E of a metric space X is open if and only if there is continuous function $f: X \to \mathbb{R}$ for which $E = \{x \in X \mid f(x) > 0\}$.
- (2) (9.4.38) In a metric space X, show that a Cauchy sequence converges if and only if it has a convergent subsequence.
- (3) (\sim 9.4.39) Let $0 < \alpha < 1$. Suppose that $\{x_n\}$ is a sequence in a complete metric space (X, ρ) and for each n, $\rho(x_n, x_{n+1}) \le \alpha^n$. Show that $\{x_n\}$ converges. Does $\{x_n\}$ necessarily converge if we only require that for each n, $\rho(x_n, x_{n+1}) \le 1/n$?
- (4) (10.3.33) Let (X, ρ) be a *compact* metric space and T a mapping $X \to X$ such that

$$\rho(T(u), T(v)) < \rho(u, v) \text{ for all } u \neq v \in X.$$

Show that T has a unique fixed point. (*Hint: Option 1:* Use Extreme Value theorem directly. *Option 2:* Show that if there are no fixed points, the function $\rho(T(u), T^2(u))/\rho(u, T(u))$ from X to $\mathbb R$ is continuous and therefore reaches its maximum. Then follow the proof of Banach Contraction Principle using Problem 3.)

The problems below can be found in the Section 10.2 of textbook.

- (5) (a) Recall that in Problem 5 of Homework 11 we defined interior int E, exterior ext E and boundary $\operatorname{bd} E$ of a subset E of a metric space. Show that for every subset E of a metric X, $X = \operatorname{int} E \cup \operatorname{ext} E \cup \operatorname{bd} E$ and the union is disjoint.
 - (b) Recall that a subset A of a metric space X is called *dense* in X if every nonempty open subset of X contains a point of A. Further, a subset of a metric space X is called hollow in X if it has empty interior. Show that for a subset E of a metric space X, E is hollow in X if and only if $X \setminus E$ is dense in X.

— see next page —

(6) Prove the following theorem:

(The Baire Category Theorem.) Let X be a complete metric space. Let $\{\mathcal{O}_n\}$ be a countable collection of open dense subsets of X. Then the intersection $\bigcap_{n=1}^{\infty} \mathcal{O}_n$ also is dense.

(*Hint:* You need to show that an arbitrary open ball $B(x_0, r_0)$ contains a point of $\bigcap_{n=1}^{\infty} \mathcal{O}_n$. Start by saying that $B(x_0, r_0) \cap \mathcal{O}_1$ is nonempty (why) and open (why), therefore contains an open ball $B(x_1, r_1)$ and a smaller closed ball $B_1 = \overline{B}(x_1, r_1/2)$. Repeat argument with the open ball $B(x_1, r_1/2)$ and \mathcal{O}_2 , and so on. Get a descending sequence of closed balls B_1, B_2, \ldots Apply the Cantor Intersection Theorem.)

(7) Prove the following theorem:

(The Baire Category Theorem.) Let X be a complete metric space. Let $\{F_n\}$ be a countable collection of closed hollow subsets of X. Then the union $\bigcup_{n=1}^{\infty} F_n$ is also hollow.

(*Hint*: Apply Problem 5b to the assertion of Problem 6.)

- (8) Let X be a complete metric space and $\{F_n\}$ a countable collection of closed subsets of X. If $\bigcup_{n=1}^{\infty} F_n$ has nonempty interior (for example, if $\bigcup_{n=1}^{\infty} F_n = X$), prove that at least one of the F_n 's has nonempty interior. (*Hint:* Pass to appropriate closed subset of X. Use Problem 7.) The above result is also called Baire Category Theorem.
- (9) Prove the following theorem.

Let \mathcal{F} be a family of continuous real-valued functions on a complete metric space X that is pointwise bounded in the sense that for each $x \in \mathbb{X}$, there is a constant M_x for which

$$|f(x)| \leq M_x$$
 for all $f \in \mathcal{F}$.

Then there is nonempty open subset \mathcal{O} of \mathbb{X} on which \mathcal{F} is uniformly bounded in the sense that there is a constant M for which

$$|f| \leq M$$
 on \mathcal{O} for all $f \in \mathcal{F}$.

(*Hint*: Define $E_n = \{x \in X : |f(x)| \le n \text{ for all } f \in \mathcal{F}\}$. Use Problem 8.)

1. Extra Problems

- (10) (10.2.20) Let F_n be the subset of C[0,1] consisting of functions for which there is a point x_0 in [0,1] such that $|f(x)-f(x_0)| \leq n|x-x_0|$ for all $x \in [0,1]$.
 - (a) Show that F_n is closed.
 - (b) Show that F_n is hollow. (*Hint:* Show that for $f \in C[0,1]$ and r > 0, there is a piecewise linear "saw-like" function $g \in C[0,1]$ for which $\rho_{\infty}(f,g) < r$ and the left-hand and right-hand derivatives of g on [0,1] are greater than n+1.)
 - (c) Conclude by Baire Category theorem that $C[0,1] \neq \bigcup_{n=1}^{\infty} F_n$.
 - (d) Show that each $h \in C[0,1] \setminus \bigcup_{n=1}^{\infty} F_n$ is not differentiable at any point in [0,1]. (*Hint*: If f is differentiable at x_0 and continuous on [0,1], then $|f(x) f(x_0)|/|x x_0|$ is bounded "close" to x_0 by differentiability, and bounded "far" from x_0 by boundedness of f on [0,1]; so it belongs to some F_n .)

NOTE. Congratulations, you proved that there are continuous functions on [0,1] that are not differentiable *anywhere*. Moreover, you proved that the set of such functions is *dense* in C[0,1].

(11) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and have derivatives of all orders. Suppose that for each $x \in \mathbb{R}$, there is index n = n(x) for which $f^{(n)}(x) = 0$. Show that f is a polynomial. (*Hint:* Use Baire Category Theorem.) Comment. If you know that n is the same for all x, the statement easily follows by calculus.

¹A closed ball $\overline{B}(x,r)$ is the set $\{y \in X \mid \rho(x,y) \leq r\}$. Show that it is a closed set.